This guide will walk you through the creation, management, and monitoring of fine-tuning jobs.
Organization | Model Name | Model id for API | Context Length | Supported Batch Sizes | Training Precision |
---|---|---|---|---|---|
Meta | Meta-Llama-3-8B-Instruct | e5f6a7b8-c9d0-1234-efab-567890123456 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Meta | Meta-Llama-3-8B | d4e5f6a7-b8c9-0123-defa-456789012345 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Mistral AI | Mistral-7B-Instruct-v0.1” | f6a7b8c9-d0e1-2345-fabc-678901234567 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Mistral AI | Mistral-7B-Instruct-v0.2 | a7b8c9d0-e1f2-3456-abcd-789012345678 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Deepseek | DeepSeek-R1-Distill-Qwen-1.5B | b1432ae3-b4ce-4e12-be53-ab0555d00f93 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Deepseek | DeepSeek-R1-Distill-Qwen-14B | c3d4e5f6-a7b8-9012-cdef-345678901234 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Qwen | Qwen2-1.5B-Instruct | a1b2c3d4-e5f6-7890-abcd-ef1234567890 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
Qwen | Qwen2.5-14B-Instruct | b2c3d4e5-f6a7-8901-bcde-f23456789012 | 8192 | (4,8,12,16,20,24,28,32) | Float16 |
queued
, running
, completed
or failed
.
train_loss
, eval_loss
, and perplexity
.
These metrics help you understand how well your model is learning and when it might be finished or require intervention. Regularly polling this endpoint during training allows you to make data-driven decisions, such as stopping training early if the model converges or adjusting hyperparameters for future runs.